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It was recently found that neuronal �and many other� networks contain some significantly recurring wiring
patterns, termed “network motifs,” which are believed to be basic building blocks of these networks and to
perform important functional roles in them. We study the functions of neuronal network motifs by computa-
tional modeling. We use both the firing-rate and integrate-and-fire models to model the neuronal network
motifs. Several interesting functions and dynamics are found in the neuronal network motifs, such as the
acceleration and delay of response and long- and short-term memory.
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Complex networks are ubiquitous in nature. Recent re-
search has uncovered that complex networks share some
common statistical features, such as the small-world effect
and the scale-free property. In addition, it was recently found
that many networks contain some significantly recurring wir-
ing patterns, termed “network motifs.” Network motifs are
patterns that occur in a real network significantly more often
than those in a randomized network with the same degree
sequence �1,2�. Especially, motifs were found in some bio-
logical networks—for example, in gene transcription net-
works �3�, brain functional networks �4�, and neuronal net-
works �1,5,6�. Motifs found in these networks are believed to
be basic building blocks and to perform specific functional
roles. Moreover, it is found that, in many systems studied so
far, the motifs are linked to each other in a way that does not
spoil the independent function of each motif �7�. That means
that the network dynamics might be understood as combina-
tions of these elementary computational units �8�. Elucidat-
ing these motifs’ functions is the first step to understand the
behaviors of whole networks. The dynamics and functions of
genetic network motifs have been intensively studied in re-
cent years �2,3�, but to our knowledge, the functions of neu-
ronal network motifs have not yet been addressed. It is inter-
esting to know what the functions of the neuronal network
motifs are �2�.

In �1,5,6�, several common redundant network motifs, as
shown in Figs. 1�a�–1�d�, were found in different neuronal
networks inferred by using different approaches. Several
other connection patterns might also be recognized as net-
work motifs in some specific neuronal networks, but the four
patterns shown in Figs. 1�a�–1�d� are the most significant
ones commonly occurring in different networks. In �1,5� the
authors considered the wiring diagram of the C. elegans
brain, in which the connections among the neurons were ob-
tained from serial-section electron microscopic reconstruc-
tions. In �6�, the connections among neurons were inferred
by simultaneous quadruple whole-cell recordings from
layer-5 pyramidal neurons in the rat visual cortex. Interest-
ingly, in �6�, it was further found that the connections among
neurons in the network motifs tend to be stronger than the
other connections. “The network may be viewed as a skel-

eton of stronger connections in a sea of weaker ones” �6�.
Thus, it is reasonable to believe that neuronal network motifs
play some important roles in the networks and the individual
functions of the network motifs are likely to be preserved
when they are connected to other neurons, which means that
the network function and dynamics might be understood as
combinations of these elementary computational modules.

In this Brief Report, we study the functions of neuronal
network motifs by computational modeling. Since the mutu-
ally connected two-neuron motif �Fig. 1�d�� is in fact con-
tained in the triple-neuron mixed-feedforward-feedback loop
�MFFL� motifs �Figs. 1�b� and 1�c��, we study here only the
functions of the three triple-neuron network motifs: the FFL
�feedforward loop, Fig. 1�a��, the MFFL1 �Fig. 1�b��, and the
MFFL2 �Fig. 1�c�� network motifs.

We model the neurons in the motifs and perform simula-
tions in two levels �9�. We use the firing-rate model, which is
intuitive, and the integrate-and-fire �IF� neuron model, which
can mimic the action potential firing dynamics of biological
neurons, in investigating the motif functions.

The firing-rate model is described by the following equa-
tion �10�:

dri

dt
= −

ri

�
+ f��

j

Wijrj − Ti� + Ii, �1�

where ri is the firing rate of the ith neuron, � is the time
constant, and Wij is the connection weight from neuron j to
neuron i. When neuron j is excitatory, Wij =1; when neuron j
is inhibitory, Wij =−1; and when there is no connection from
neuron j to neuron i, Wij =0. The constant Ti is the threshold,
which is 0 Hz for excitatory neurons and 10 Hz for inhibi-
tory neurons. Ii is the input. Without loss of generality, the
response function f�·� is as follows:

f�x� = �0, x � 0,

tanh�x� , x � 0.
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FIG. 1. Connection patterns: �a�–�d� triple-node and two-node
neuronal network motifs; �e� simple drive of C by A and B as a
comparison of the feedforward loop.
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The integrate-and-fire model is described as follows �10�:

dvi

dt
= �Vrest − vi�/�1 + Is + Ii, �2�

where Ii is the applied current, �1 is a time constant, and the
resting membrane potential Vrest=−65 mV. The synaptic cur-
rent Is is defined as Is=� jgj�E−vi�. The reversal potential
E=0 mV if neuron j is excitatory and E=−75 mV if neuron
j is inhibitory. When a neuron fires, the synaptic conductance
g of its postsynaptic target neuron is increased, g=g
+ Pmax�1−g�, and in the other time dg /dt=−g /�2. The fixed
parameters �1=10 ms, �2=15 ms, and Pmax=0.5. Whenever
the membrane potential reaches a threshold Vth=−50 mV, an
action potential is generated and the membrane potential is
reset to the resting potential Vrest, where it remains clamped
for a 2-ms refractory period. The above parameter values in
the two models are widely used in the literature.

It should be noted that we are interested in qualitative
functions of the network motifs and we did not consider the
quantitative correspondence between the two types of mod-
els in setting the parameters. By using other spiking neuron
models—for example, the Izhikevich model �11�—we can
also obtain similar results. For simplicity, we present the re-
sults of the IF neuron model in this Brief Report.

Since we do not know whether the neurons in the motifs
in Figs. 1�a�–1�c� are excitatory or inhibitory, we consider all
possible combinations of excitatory and inhibitory neurons in
the motifs. In all motifs, we consider A as the input neuron
and C as the output neuron. We use E and I to represent
excitatory and inhibitory neurons, respectively.

The FFL is one of the most significant network motifs in
many networks �1�. In the FFL, neuron A drives neuron B,
and A and B both drive neuron C. As in �12�, in studying the
function of the FFL, we use the “simple drive” of C by A and
B �Fig. 1�e�� as a reference of comparison.

Depending on whether neurons A and B are excitatory or
inhibitory, there are four possible structural configurations of
the FFL, but we have only found interesting results �in this
Brief Report, by “interesting results,” we mean that we can
distinguish functional roles from these results� in the FFL
with �A ,B ,C�= �E , I ,E� neurons, which is the so-called inco-
herent type-1 FFL �I1-FFL� �12�. It is interesting to notice
that many neuron types in biological neural networks are
indeed wired as I1-FFL �13�.

In the firing-rate model, we let the time constant �
=5 ms. The input I�t� to neuron A is shown in Fig. 2�a�, and
the input to neuron B is set to Iy =1 for all times, in both the
FFL and the simple drive. With the above setting of the pa-
rameters, the steady states of neuron C �when the input is
ON� of the FFL and the simple drive are the same. In the
integrate-and-fire model, we let the input to neuron A be a
random variable of uniform distribution in 0–10 nA during
the ON period �between 20 ms and 60 ms� and the input to B
as a constant of 10 nA. We use random input here simply
because constant input will induce a trivial spike pattern. It
should be noted that when constant input is applied to neuron
A, we can get the same conclusion on the functional role.
The simulation results are shown in Fig. 2. In Fig. 2�b� we
show the firing rate of neuron C based on the firing-rate

model. As we see, the FFL can both accelerate the response
to the ON step and delay the response to the OFF step of the
input to neuron A. The spike rasters of 100 trials produced by
the integrate-and-fire model, as shown in Figs. 2�c� and 2�d�,
confirm the above observation.

In the case of the integrate-and-fire model, the spiking
frequency of the output neuron is obviously affected by both
the input current and the refractory period, so the absolute
value of the spiking frequency is nonsensical. Besides, we
are considering the qualitative logic function of the motif,
and the quantitative spiking frequency will not affect our
conclusion, so in this Brief Report, we do not calculate the
spiking frequency.

Next, we study the motifs MFFL1 and MFFL2 shown in
Figs. 1�b� and 1�c�. We do not consider reference connection
patterns here since, on the one hand, we did not find an
appropriate comparison pattern; on the other hand, the dy-
namics �memory� does not depend on a comparison. In both
network motifs, we set the time constants in Eq. �1� as �
=10 ms. There is no external input to neurons B and C.

In the MFFL1 motif, we let the input to neuron A of the
IF model as a random variable of uniform distribution in
0–10 nA during the ON period �between 20 ms and 60 ms�.

When neurons �A ,B ,C�= �E ,E ,E�, the input to the firing-
rate model, the firing rate of neuron C, and the spike raster
are shown in Figs. 3�a�–3�c�, respectively. As we see, in this
connection configuration, the motif serves as a long-term
memory circuit.

When neurons �A ,B ,C�= �E ,E , I�, the motif functions as
a short-term memory, as shown in Fig. 4. When the time
constants � in the firing-rate model and �1 and/or �2 in the
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FIG. 2. �Color online� Functions of the feedforward loop �FFL�:
�a� Input to neuron A. �b� The firing rate of neuron C in the firing-
rate model. Solid line: FFL. Dashed line: simple drive of C by A
and B �Fig. 1�e��. �c� Spike raster of the FFL of 100 trials. �d� Spike
raster of the simple drive of 100 trials.
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integrate-and-fire model are increased, the memory period
will also be increased. For example, when the neurons
�A ,B ,C�= �E ,E , I� and �=�1=�2=20 ms, the dynamics of
the motifs are shown in Fig. 5, which confirms the above
statement �when compared with Fig. 4�.

In the MFFL2 motif, we need a strong input to active both
neurons B and C in some connection configurations. We let
the input to neuron A of the IF model be a random variable
of uniform distribution in 0–50 nA during the ON period
�between 20 ms and 60 ms�. Since in this motif both neurons
A and B drive neuron C, we only need to consider whether
neurons A and B are excitatory or inhibitory. When neurons
�A ,B�= �E ,E� and �E , I�, the motifs can also function as
long-term and short-term memories, respectively. The simu-
lation results are shown in Figs. 6 and 7. When neurons
�A ,B�= �E , I�, by increasing the parameter values of � and �1

and/or �2, the memory period can also be prolonged. Since
the results are quite similar to those in the above MFFL1
case, we omit the results here.

We did not find interesting functional roles in the other
configurations of the MFFLs. Since long-term and short-term
memories play important roles in almost all neural computa-
tion and cognition tasks, the above findings might to a cer-
tain degree explain the redundance of the MFFLs.

In summary, in this Brief Report, we studied the functions
of neuronal network motifs and we have found some �though
not as many as had been expected� interesting functional
roles for them. We did not obtain as many functions as in
genetic network motifs at least due to the following two
reasons: �i� The experimental results on motifs in neuronal
network are not as extensive as in genetic networks, so the
number of motifs found in neuronal networks is itself less
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FIG. 3. �Color online� MFFL1 with neurons �A ,B ,C�
= �E ,E ,E� functioning as long-term memory: �a� the input to the
firing-rate model, �b� the firing rate of neuron C, and �c� the spike
raster of neuron C of 100 trials.
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FIG. 4. �Color online� MFFL1 with neurons �A ,B ,C�
= �E ,E , I� functioning as short-term memory: �a� the input to the
firing-rate model, �b� the firing rate of neuron C, and �c� the spike
raster of neuron C of 100 trials.
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FIG. 5. �Color online� MFFL1 with neurons �A ,B ,C�
= �E ,E , I� and �=�1=�2=20 ms: �a� the input to the firing-rate
model, �b� the firing rate of neuron C, and �c� the spike raster of
neuron C of 100 trials.
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FIG. 6. �Color online� MFFL2 with neurons �A ,B�= �E ,E� func-
tioning as long-term memory: �a� the input to the firing-rate model,
�b� the firing rate of neuron C, and �c� the spike raster of neuron C
of 100 trials.
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than that in genetic networks. �ii� In neuronal networks, the
configurations of connection patterns are characterized by
the excitatory and inhibitory properties of the neurons, but in
genetic networks, the configurations are characterized by the
activation and repression of the links, so the number of con-

figurations in neuronal network motifs is less than that in
genetic network motifs. For example, in the FFL, if neuron A
is excitatory, then it can only excite both neuron B and neu-
ron C �though a �small� portion of neuroscientists do not
agree with this�; in other words, the links A→B and A→C
are both excitatory. But in genetic networks, the links �regu-
lations� A→B and A→C are independent, so that gene A can
active and repress genes B and C independently. Neverthe-
less, by the results found in this Brief Report, we can con-
clude that, as in genetic networks, motifs in neuronal net-
works can also play important functional roles. We do not
exclude other possible functions. When more experimental
results become available, by using more detailed models of
neurons and synaptic connections, other dynamics and func-
tions might be found.
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FIG. 7. �Color online� MFFL2 with neurons �A ,B�= �E , I� func-
tioning as short-term memory: �a� the input to the firing-rate model,
�b� the firing rate of neuron C, and �c� the spike raster of neuron C
of 100 trials.
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